四川PAC混凝剂的混凝动力学之异向凝聚动力学
液体中分散粒子的絮凝与;粒子间的相互接触和碰撞有关,而它们的相互接触和碰撞由其相对运动引起。造成这种相对运动的原因可以是微粒的布朗运动,也可以是产生速度梯度的流体运动。胶体或微粒间的相互接触和碰撞方式主要有3种:a.分子扩散及重力沉降引起的碰撞,由这种碰撞引起的絮凝称为异向絮凝(perikinetic flocculation),这种碰撞主要发生在静止的水中;b.在水的层流状态下,由于速度梯度而产生碰撞,由这种碰撞引起的絮凝称为同向絮凝(orthokinetic flocculation),层流状态是发生这种碰撞的水动力学条件;c.由水的湍流运动而产生的碰撞,湍流可以认为是一种具有非均匀的脉动变化的速度梯度的运动,因此湍流碰撞也属于同向絮凝范畴。由于湍流状态下的扩散系数为分子扩散的几千倍,所以湍流碰撞远比前两种碰撞激烈而有效。因此,絮凝剂同分散系必须进行良好的混合,实际应用中絮凝首先采用湍流搅拌强化絮凝过程。但不应过分延长强烈的搅拌时间,因为在被剪切力粉碎的絮体中,絮凝剂有可能在发生自身吸附形成较为平衡的构型,而且在剪切力被除去之后也不可能再恢复原来的絮凝状态。
由DLVO理论的介绍我们可知,胶体或微粒在碰撞时能否相互聚结生成絮凝体,这主要取决于胶体或微粒碰撞势能曲线上能垒Emax的高低(图2-5)。当能垒Emax大于4.12*10^-20-6.18*10^-20J时,相互间的排斥作用能很大,胶体或微粒几乎不能互相靠拢而发生聚结,碰撞效率系数(Φ)接近于零;当能垒Emax小于4.12*10^-20J时,Φ介于0-1之间;当能垒Emax=0时,所有的碰撞均能引起胶体或微粒间的聚结,Φ=1,此时,所有的碰撞均是有效碰撞,均导致絮凝体的产生,这种絮凝称为快速絮凝或强混凝;当0
异向凝聚动力学
在异向絮凝中微粒的碰撞由其布朗运动造成,碰撞频率决定于微粒的热扩散运动。Smoluchowski将扩散理论用于聚沉,首先讨论了球形颗粒的聚沉速度。
将某一微粒看作是静止不动的,称为捕集者(j微粒),然后计算由布朗运动引起的其他微粒(i微粒)向捕集者运动的速度。由于i微粒被j微粒捕集而形成一个自j微粒始的辐射状浓度梯度。在迅速建立的稳态下,微粒的浓度不随时间而变,即dNi/dt=0,根据Fick第二扩散定律:ac/at=Da2c/ax2或ac/at=a/ax(Dac/ax)
式中,x是扩散方向上一定位置处的坐标;c为该处的浓度;D是扩散系数。对于球形捕集者有:dNi/dt=1/r2 d/dr(r2Di dNi/dr)
式中,r是离开捕集者的辐射半径;Ni是辐射半径为r处的i微粒的浓度。根据函数的积的微分法则: dNi/dt=Di(d2Ni/dr2+2dNi/rdr)=0
上式的边界条件如下:在r=Rij处(Rij=ai+bj即微粒和j微粒的半径之和),Ni=0,就是说,在捕集者j微粒的表面处,液体中i微粒的浓度为零。而在r=∞,则有Ni=N0,就是说,在离捕集者j微粒无限远处,Ni等于本体溶液中液体中i微粒的浓度。由此边界条件求解上式可得:Ni/N0=1-Rij/r2和dNi/dr=N0Rij/r2
即给出了i微粒的局部浓度和浓度梯度,它们是辐射半径的函数。微粒向捕集者扩散的速度由Fick第一定律得到:dm/dt=DA dc/dx
考虑到扩散方向与r的方向相反,即x=-r,因而在r=Rij处就有:dNi/dt=Di·4πR2ij(dNi/dr)r=Rij
式中dm是dt时间内通过截面积A的物质质量,式中的dNi/dt是单位时间内i微粒向捕集者j微粒的碰撞次数,当r=Rij时,将式dNi/dr=N0Rij/r2代入上式就得到:dNi/dt=4πRijDiN0,i
由于捕集者也具有布朗运动,所以实际的扩散系数是:Dij=Di+Dj
当i和j可分别取值1,2,3,…,n,表示颗粒的不同大小,设i微粒和j微粒碰撞生成k微粒(k=i+j),则k为某一取值的微粒的生成速度为:dNk/dt=1/2 i=k-1 ∑ j=k-1 4πRij Dij NiNj-Nk ∞∑i=1 4πRikDikNi
此式第一项为k微粒由i微粒和j微粒碰撞而生成的速,第二项为k微粒由于同其他微粒碰撞而消失的速度。第一项前的系数1/2是由于重复计算的结果,因为这里对每一微粒的碰撞的计数实际为2,一次是作为i微粒,一次是作为j微粒。
根据Einstein-Stokes公式 D=KT/6πμα
式中,K为Boltzmann常数;T为水的热力学温度;μ为水的黏度;a为微粒半径。可以看出扩散系数与微粒的半径a成反比,故Rij和Dij乘积可以表示为最初的单分散微粒(设i=1)的扩散系数Di的函数:
RijDij=(ai+aj)(Di+Dj)=(ai+aj)(D1 a1/ai+D1 a1/aj)=(ai+aj)(1/ai+1/aj)D1a1
如果i微粒和j微粒大小相同,上式就成为:RijDij=4D1a1
在1
根据式(2-52)计算得出的异向絮凝半衰期很长,达到数天甚至上百天的时间,也就是说,即使是在完全脱稳的情况下,异向絮凝过程也是非常缓慢的。
前面的这些计算都是假设为快速絮凝,但实际上粒子可能是部分脱稳,因而仅有一部分碰撞时有效的,这部分碰撞可用系数。来表征(a=1为快速絮凝,a
-
答:碱式氯化铝(PAC)又称聚合羟基氯化铝。碱式氯化铝可用于处理黄河高浑浊水。因为碱式氯化铝的活性成分(Al2O3)高,用量少,而且运输、贮存和使用方便,所以在Al...
-
答:不同水质对混凝剂用量的要求不同,混凝剂对水中大分子有机物和憎水性有机物有较好效果。主剂和辅剂在预处理中具有极好的协同作用,具有优异的助凝作用,能有效地去除有机污...
-
答:三、药剂溶液的提升及投加为实现自动控制,可采用计量泵、转子流量计或流量仪等,其设计要求如下:①泵及管道应采用耐腐蚀的金属材料。①重力投加利用重力将药剂聚合氯化铝...
-
答:式中N-搅拌器功率,kW;n-搅拌器桨叶数,片;Cs-阻力系数,Cs取值为0。5m/s,分节数2-3段;(2)重力投加时,管式混合器投加点应设在文丘里管或孔板的...
-
答:这条规则就是有名的叔采-哈代(Schulzc-Hardy)法则。对于亲水性胶体微粒,要使其脱稳,主要是压缩水化膜的厚度,也可以采用投加电解质来完成,只是投加量要...